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E N E R G Y  M E T H O D  F O R  P R O B L E M S  

OF D I F F U S I O N  IN A M O V I N G  M E D I U M  

V. V. Denisenko UDC 536.75 

Formulation of  the  P r o b l e m .  The problems of diffusion of a substance in a moving medium arise in 
very different fields of natural science, for example, in mathematical simulation of the dynamics of ionospheric 
inhomogeneities or of the process of propagation of pollutants in the atmosphere. 

In accordance with [1], the diffusion equation for small concentrations of an admixture has the form 

div (puG) - div (pD grad C) = Q, (1) 

where C is the mass fraction of the admixture, p is the density of the admixture, u = (u, v) is the velocity 
vector, D is the diffusion coefficient, and Q is the density of the admixture source. The Cartesian coordinates 
x, y are used. 

The diffusion coefficient considered is a scalar, but all results are also valid for the symmetric, positive- 
definite tensor D. 

Equation (1) holds in a two-dimensional domain l-I with boundary F. Only the function C ( z , y )  is 
unknown. 

If a substance that absorbs completely an admixture is outside the boundary, then the admixture 
concentration at the boundary is zero. Let us write this condition for a more general inhomogeneous variant: 

C I = Co(1), (2) 
F 

where I is a coordinate along the boundary curve F. 
In the steady-state case, the density and the velocity satisfy the equation of continuity 

div (pu) = 0. (3) 

From thermodynamic considerations, the diffusion coefficient is strictly positive, and Eq. (1) is, 
therefore, elhptic. The operator of the boundary-value problem (1) and (2) is nonsymmetric. Therefore. 
the principle of minimum quadratic energy functional, which allows one to use the most effective methods of 
approximate and numerical solution of problems with symmetric operators [2], is not valid for this operator. 
The thermodynamic principles of nonequilibrium processes, like the principle of production of minimum 
entropy, etc. cannot be formulated for such problems [3]. 

The purpose of the present paper is to formulate the original problem as a problem with a symmetric 
positively defined operator and to substantiate the corresponding energy principles. 

Similar results for electric-conduction problems in which the nonsymmetry is due to the Hall effect have 
been obtained by the author in [4-6]. The energy principles made it possible to create economical numerical 
methods for solving the problems numerically and to solve some problems of ionospheric physics which cannot 
be solved by traditional methods [7]. 

Descr ip t ion  of T r a n s p o r t  by Gyro t rop i c  Diffusion. By virtue of (3), for flow, a stream function 

p u = -  rot~, (4) 
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can be constructed where ~ is the z component of the vector (0, 0, 8)0 and rot has the x and y components. 
Since the function ~ can be easily constructed from a given distribution of pu, we regard it as a spherical 
function. 

Equation (1) then takes the form 

- d i v  pD OC/Oy = Q" (S)  

This equation has the same form as the law of conservation of charge if C is the electric potential, pD 
and ~ are the Pedersen and Hall conductivities, respectively, and Q is the density of the source of current. 

We denote the tensor of coefficients by ~r. It is symmetric only for ~ = O, when the material is at rest. 
The symmetric part of ~r is positively defined. 

The vector 
j = -~rgrad C (6) 

is similar to the electric-current density for Eq. (5) but does not coincide with the true admixture flow, whose 
divergence is given by Eq. (1). The admixture flow is equal to j - rot(~C). The difference has zero divergence 
and precisely owing to this circumstance, we succeeded in writing the law of conservation of admixture mass 
(1) as a law of conservation for a certain auxiliary transfer process which occurs according to (6). 

As its component-by-component form in (5) shows, the tensor cr is invariant under rotation about the 
z axis, because it itself specifies the rotation about this axis and the isotropic tension. Therefore, (6) is a 
diffusion law in a gyrotropic medium. 

By analogy with the electrical-conduction problems, we denote 

E = -g r ad  C. (7) 

Since rot of grad is identically equal to zero, the vector E satisfies the expression rotzE = 0. 
Construction of E is equivalent to construction of C(x, y) if we specify additionally the average value 

of C over f~ or F. Therefore, the original problem (1) and (2) can be replaced by the following problem: 

E = G ,  j = ~ r E ,  E l} r=g(1) .  (8) divj Q, rotz 

Here the second equation is inhomogeneous for generality, although usually G = 0. The boundary condition 
is obtained by differentiating (2) along the boundary. As noted above, the average value of the function Co(1), 
which vanishes in this case, will be used to construct C(x, y) after solving problem (8). 

Having integrated the second equation of (8) over the entire domain and the boundary condition over 
the whole boundary, we obtain the following condition which is necessary for the solution of problem (8): 

N Gdxdy = ~ gdl. (9) 

For G = 0 and with the constructed function g, this condition is satisfied automatically. In the general 
case, we assume that the specified functions G and g are subject to this condition and that the integrals of 
the squares of the given functions Q, G, and g are finite. The latter condition can be replaced by a weaker 
condition of divergence [2], which admits the presence of sources concentrated on straight lines. 

Problems of gyrotropic diffusion of the form (8) or problems with other boundary conditions can arise 
regardless of problem (1) and (2). The direction of rotation about the z axis, which was selected for a. can 
be related to the magnetic intensity vector oriented along z if the diffusing particles are charged or with the 
z-oriented angular-velocity vector of rotation of the medium. 

T h e  E n e r g y  P r inc ip l e .  Like the operator of the original problem (1) and (2), the operator of the 
boundary-value problem (8) is nonsymmetric. However, a symmetric formulation of such problems is proposed 
in [4]. Here we just formulate the results, since the method of symmetrization with appropriate proofs is 
described in detail in [6]. 

Let us introduce two new unknown functions F and P in terms of which the old unknowns j and E 
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are expressed by the formula 1 
j = ~E = - ~---crS~rtgrad F + aS  rot P, (10) 

if0 

where P is the z component of the vector (0, 0, P), S is an arbitrary symmetric and uniformly and positively 
defined tensor with bounded coefficients, cr0 is a nondimensionalizing constant, and the superscript t denotes 
transposition. 

The best estimates were obtained for 

S -1  = (O" 3r- o ' t ) / (20"0),  0"0 = q~lE2 .  (11) 

Here the constants E1 and E2 are such that the conditions 0 < E1 ~< pD and pD + B~/(pD) ~< ~2 are satisfied 
uniformly in the domain fL 

We consider the set of pairs of functions F and P subject to the following conditions: 

F I =0, ffPdxdy=O. (12) 
F n 

Let us introduce the following energy scalar product: 

P ' P' = rot P -(llao)Scr t S rot P' dxdy. (13) 

The set of pairs of functions which are subject to conditions (12) and have a bounded energy norm is 
called the energy space of the problem. 

We introduce an energy functional in the form 

H s W(F,P)=-~  p , p - (FO/ao+ eG)dxdy + Pg(l)dl. (14) 

It has been proved that the energy functional has a single minimum on the functions in the energy 
space. The pair of functions that is responsible for a minimum value of the energy functional is a generalized 
solution of the following problem: 

d i v ( -  ~--~aSatgrad F +  1crSo'0 rot " ) =  Q/ao, rotz(  - 1Satgrada0 F + S rot " ) =  G; (15) 

( - 1 S c r l g r a d F +  S r o t , ) l  = , ( / ) .  (16, 
o'o 1 r 

These equations are the minimum conditions for W(F, P). The boundary condition (16) is called 
a natural condition, because it is satisfied as a result of minimization, in contrast to the basic boundary 
conditions (12), which specify a set of admissible functions F and P. 

Thus, the existence of a generalized solution of problem (8), which is a classical solution in the case of 
smoothness, was proved. The uniqueness of the classical solution of (8) was also proved in [61 . 

Formula (7) makes it possible to construct, with the use of the solution of problem (8), the function 
C up to an arbitrary additive constant. The arbitrariness arises because of differentiation of the boundary 
condition (2) in going to (8). For the constructed function C to be a solution of problem (1) and (2), this 
constant should be determined from the equality condition of the average values of the right- and left-hand 
sides of (2). 

Symmetrization of the problem can be regarded simply as multiplication of the original operator by 
the conjugate operator from the right, as it is actually done to introduce potentials for unknown (usually 
vector) functions. 

I m p e r m e a b l e  Bounda ry .  Two basic boundary conditions are possible for system (8): we specify the 
tangential component of E, as in (8), or the normal component of j: 

J" r = q(l). (17) 
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For gyrotropic diffusion, these conditions correspond to two basic physically realizable types of 
boundaries corresponding to a completely absorbing or impermeable substance. 

For the original equation of diffusion in a moving medium (1), the fist condition has already been 
shown to have the same meaning and to correspond to condition (2). Condition (17) can be written in the 
original notation as follows: 

OC OC 
( -  pD ~-n +/3--~-)1 r = q(/). (18) 

If the boundary is impermeable not only for the admixture, but also for the basic substance, it is a 
streamline. Hence, by virtue of (4), the stream function at this boundary is constant and can be set equal to 
zero. 

Condition (18) then takes the form 
OC 

-PD'~n r = q(1). 
Thus, the impermeable boundary in the problem of diffusion of an admixture in a moving medium is 

described by the boundary condition (17) in the problem of gyrotropic diffusion. 
For the functions F and P, in the problem (15) and (16) the natural boundary condition (16) is then 

replaced by 
/ 1 1 \ 

[ O'S rot P) = q(l), - cr 7 ~rS~rtgrad F + cro n r 

and the basic boundary conditions (12) are replaced by 

PI =0 ,  gFdzdy=O.  
F fl 

Instead of (9), the condition 

f f  Qdxdy = f qdl 
becomes necessary for the solution of the problem. 

Mixed  Boundary -Va lue  Prob lem.  If the boundary of the domain consists of alternating sections of 
impermeable and admixture-absorbing substances, all impermeable sections lying along a single streamline. 
then the original problem can be reduced to the mixed boundary-value problem for the functions F and P. 

We formulate the problem only for the case where there are four such sections, and the inhomogeneity 
of the problem is determined by a single number ~. This number specifies the difference between the 
concentrations of two sections of the boundary. The general mixed boundary-value problem has been 
investigated in [6]. 

Of four sections (F1,3'1, I"2,72), which form in this order, a closed boundary F, let sections Fx and F., 
be impermeable, and sections 3'1 and 72 be absorbing. 

Even with the zero functions Q, G, ql,2, and 91,2, the solution is not identically zero because of the 
inhomogeneity in the following condition: 

C1-~2 = 0 , CI-q =~.  (19) 

As shown in [6], in this case, in going to the functions F and P it is reasonable to minimize the energy 
functional for 

F ~'1 = e '  F 7 2 = 0 '  P rl = 0 '  P I"2=0" (20) 

The energy functional for this problem consists only of the energy scalar product. 
If we minimize this energy functional on another set of functions F1 and P1 that are specified by the 

basic boundary conditions 

F, =0, F , - - 0 ,  =0, 
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then we solve a problem in which the total flux through the boundary of 3'2 

/j,~dl = (22) V 

"t2 

is specified rather than the difference between the concentrations at the sections of the boundary, as under 
conditions (20). 

By virtue of the homogenei ty of the first equation of (8) and the impermeabili ty of the sections F1,2, 
this flux enters the domain through the section 3'l- 

The functions E and j,  which are the solution of the problem with condition (22), will be distinguished 
from the solution of the problem with condition (19) only by the common factor. The factor can be found 
easily by determining the flux through 3'2 in the solution with given concentration (19) or the difference 
between the concentrations of sections 3'1 and 3'2 in the solution with the given flux (22). Therefore, it suffices 
to solve only one of the problems. 

One can calculate the ratio 

72 F 2 

The parameter  ol does not depend on the very values of ~ or v, because j and E are proportional to them. 
characterizes the total permeabil i ty of the domain f~, and is similar to the total conduction of a body as a 
whole in electrical-conduction problems or to the capacity of a pair of bodies in electrostatics problems. 

Symmetrizat ion allows one to obtain two-sided estimates of a [6] in a similar way as two-sided estimates 
of capacity are given by the Dirichlet and Thomson principles [8]. For arbitrary pairs of functions F, P and 
ill, Pl,  which satisfy, respectively, (20) for ~ = 1 and (21) for -'7/ao = 1, the inequalities 

F1 F1 -1 F F [(,,) (,,)]) [(,) (,)] 
hold. 

The better  the functions F, P and F1, P1 minimize the energy functional, the more precise the estimates. 
Condition (22) is meaningful  for the original problem (1) only if sections 3'1,2 lie along the common 

streamline, as does F1,2. In this case, when the basic substance moves not intersecting the boundary of the 
domain, definition (23) of the total permeability ot and the method  of obtaining its two-sided estimates based 
on (24) are valid for diffusion in a moving medium. 

T h e r m o d y n a m i c s .  Wi th  coincidence of the elements (F, P) = (F', P'), the energy scalar product 
(13) assumes the quadratic form and can be written in terms of problem (8). The  tensor S can be specified 
in the form S -1 = (Oh + ~rtO)/(2cr0), which is more general in comparison with (11). Here O is an arbitrary 
symmetric tensor, such tha t  the tensor S remains uniformly and positively defined. If (7 is gyrotropic, it is 
necessary and sufficient that  O be uniformly and positively defined. Then we have 

The solutions of problem (8), which were generated for various O, coincide owing to the uniqueness of the 
solution proved, al though the functions F and P can be distinguished. 

In particular, O can be given as a product  of the unit  tensor by the scalar function 0. Then the integral 
in (25) has the following form: 

//(gr d C)tpDOgrad C dxdy. (26) 

The nonsymmetr ic  part  of a is not included in the quadratic form. Integral (26) can be written as the 
entropy-production rate: 

pD O# 
1 i f ( g r a d  C) t - -~ - -~grad  C dxdy 
or0 T 
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if we specify 0 = T-~O# / OC, where T is the temperature and # is the chemical potential [1]. With 0 = O#/OC, 
this integral is equal to the thermal-energy production rate by diffusion. This circumstance, by the way, 
accounts for the inclusion of the word energy into the terms scalar product (13) and functional (14). 

The thermodynamic function 0 = 0# / OC depends on the admixture concentration, which is a solution 
of the problem, and the coefficient in the integrand quadratic form must be specified before the problem 
is solved. The function 0 can be specified, because it does not enter the original problem for admixture 
concentration. We shall solve the problem setting, for example, 0 = 1. We construct E and C using the 
found F and P.  Since 0# / OC is a known function of C, T, one can now specify 0 = O# / OC. After this, we 
again solve the problem by minimizing the energy functional. The functional has changed, because 0 r 1. As 
a consequence, we obtain the different F and P, but the same E and C. Such a two-stage solution does not 
seem to be reasonable in practice, but enables us to make the quadratic part of the energy functional equal 
to the entropy-production rate with a specified temperature distribution. 

As mentioned above, for the mixed boundary-value problem in the domain bounded by a single 
streamline, the energy functional consists only of the quadratic part. In this case, the energy principle 
substantiated above can be treated as a minimization of the total entropy-production rate. The minimization 
is conditional, i.e., it is achieved for various concentration distributions, which can be represented in the form 
corresponding to formula (10): 

| 

- g r a d  C = -~---S(rtgrad F + S rot P, 
(Y0 

where F and P are functions subject to conditions (12). 
It should be noted that  the principle of minimum entropy production for diffusion in a moving medium 

cannot be valid in an unconditional form, because entropy production does not depend on the motion of a 
medium. Introduction of the potentials F and P ensured a reasonable freedom for the functions C, similarly 
to the way the field-to-potential transition in electrostatics ma~de it possible to formulate the principle of 
minimum field energy without the constraint "among irrotational fields." In our case, the availability itself of 
the function C ensures the irrotational character of grad C. However, the condition determined by formula 
(10) rather than this condition turns out to be necessary to formulate the energy principle. 

In the degenerate case of diffusion in a medium at rest where the tensor a is symmetric,  we can take 
S = a -1. Then the problems for F and P are not connected, and F and P themselves acquire the meaning 
of a potential and of a s tream function for a diffusing substance. For problem (1) and (2), with G = 0 we 
simply obtain F = C and P = 0. 

The energy principle substantiated above can be regarded as an extension of the principle of a minimum 
rate of total entropy production to diffusion processes in a moving medium, because only low-order terms are 
included additionally in the energy functional. This principle, however, can be completely interpreted from a 
thermodynamic point of view as well. 

T h e  P r i n c i p l e  o f  M i n i m u m  F l u c t u a t i o n s .  Like any bounded linear functional, by virtue of the 
Riesz' theorem, the set of low-order terms of the energy functional (14) can be represented as a scalar product 
by some fixed element in the energy space F s and P~. 

Therefore, the energy functional can be transformed into the form 

W(F,P) = ~ p _  p, , p _  p, --~ p , ,  p, , 

where the quadratic part, which depends only on the differences of the functions, is immediately isolated. 
Since the second term is not dependent on F and P, only the first te rm can be minimized. This 

quadratic form can be writ ten in terms of the original problem, similarly to (26): 

I f / (grad(C_Ci ) ) tpDOgrad(C_C)dxdy  +const. (27) 

Here C * is an exact solution. 
The difference C - C t, i.e., the difference between the arbitrary concentration distribution and the exact 
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solution, can be called the concentration fluctuation. The total entropy-production rate is a measure of the 
intensity of fluctuations. Prior to minimization, it is necessary to eliminate the ambiguity in the determination 
of entropy, which corresponds to an arbitrary temperature distribution. For convenience, the tensor O should 
be taken as a unit tensor to solve the problem numerically or approximately if there are no special requirements 
on the accuracy of solution in a certain part of the domain [6]. 

Thus, the principle of minimum energy functional that we have proved can be treated as a 
thermodynamic principle of minimum fluctuations. The minimum is unconditional in the space of potentials 
F and P and conditional in the space of admixture-concentration distributions. 

At first glance, this principle seems to be trivial: when the functions are equal, any measure of their 
difference vanishes. If the function C ~ could be known a priori, finding an exact solution with the use of this 
principle would be simple: C = C ~. However, the function C ~ is not known. Therefore, neither the difference 
C - C' nor the integral in (27) can be calculated. But one can minimize W(F, P), which has already been 
proved to have the same effect. 

Conc lus ions .  For problems of admixture diffusion in a moving medium, diffusion problems in a 
gyrotropic medium at rest that have the same solutions have been formulated. This has allowed us to use the 
previously developed technique of symmetrization. 

The principle of minimum quadratic functional has been justified. Thermodynamically, this principle 
is interpreted as the principle of minimum fluctuations. The entropy produced by fluctuations is a measure 
of their intensity. Minimization is conditional in the space of admixture-concentrations distributions and 
unconditional in the space of the potentials introduced. A method for obtaining estimates of the integral 
characteristic of diffusion in the streamline-bounded domain has been proposed. 

Owing to symmetrization, new boundary-value problems have been formulated, which, in contrast to 
the original problems, have symmetric positive-definite operators. This makes it possible to use the most 
effective methods of approximate and numerical solutions. 
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